Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 9545, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664493

RESUMEN

An essential research area for scientists is the development of high-performing, inexpensive, non-toxic antibacterial materials that prevent the transfer of bacteria. In this study, pure Bi2WO6 and Bi2WO6/MWCNTs nanocomposite were prepared by hydrothermal method. A series of characterization results by using XRD FTIR, Raman, FESEM, TEM, and EDS analyses, reveal the formation of orthorhombic nanoflakes Bi2WO6 by the addition of NaOH and pH adjustment to 7. Compared to pure Bi2WO6, the Bi2WO6/MWCNTs nanocomposite exhibited that CNTs are efficiently embedded into the structure of Bi2WO6 which results in charge transfer between metal ion electrons and the conduction or valence band of Bi2WO6 and MWCNTs and result in shifting to longer wavelength as shown in UV-visible and PL. The results confirmed that MWCNTs are stuck to the surface of the microflowers, and some of them embedded inside the Bi2WO6 nanoflakes without affecting the structure of Bi2WO6 nanoflakes as demonstrated by TEM. In addition, Pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite were tested against P. mirabilis and S. mutans., confirming the effect of addition MWCNTs materials had better antibacterial activity in opposition to both bacterial strains than pure Bi2WO6. Besides, pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite tested for cytotoxicity against lung MTT test on Hep-G2 liver cancer cells, and flow-cytometry. Results indicated that pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite have significant anti-cancer efficacy against Hep-G2 cells in vitro. In addition, the findings demonstrated that Bi2WO6 and Bi2WO6/MWCNTs triggered cell death via increasing ROS. Based on these findings, it appears that pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite have the potential to be developed as nanotherapeutics for the treatment of bacterial infections, and liver cancer.


Asunto(s)
Antibacterianos , Antineoplásicos , Bismuto , Nanocompuestos , Compuestos de Tungsteno , Nanocompuestos/química , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Bismuto/química , Bismuto/farmacología , Compuestos de Tungsteno/química , Compuestos de Tungsteno/farmacología , Nanotubos de Carbono/química , Pruebas de Sensibilidad Microbiana , Supervivencia Celular/efectos de los fármacos , Células Hep G2
2.
Langmuir ; 40(14): 7560-7568, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38553424

RESUMEN

It is essential and challenging to develop green and cost-effective solar cells to meet the energy demands. Solar cells with a perovskite light-harvesting layer are the most promising technology to propel the world toward next-generation solar energy. Formamidinium lead tri-iodide (FAPbI3)-based perovskite solar cells (F-PSCs), with their considerable performance, offer cost-effective solar cells. One of the major issues that the PSC community is now experiencing is the stability of α-FAPbI3 at relatively low temperatures. In this study, we fabricated FAPbI3-PSCs using cyclohexane (CHX) material via a two-step deposition method. For this purpose, CHX is added to the formamidinium iodide:methylammonium chloride (FAI:MACl) solution as an additive and used to form a better FAPbI3 layer by controlling the reaction between FAI and lead iodide (PbI2). The CHX additive induces the reaction of undercoordinated Pb2+ with FAI material and produces an α-FAPbI3 layer with low charge traps and large domains. In addition, the CHX-containing FAPbI3 layers show higher carrier lifetimes and facilitate carrier transfer in F-PSCs. The CHX-modified F-PSCs yield a high champion efficiency of 22.84% with improved ambient and thermal stability behavior. This breakthrough provides valuable findings regarding the formation of a desirable FAPbI3 layer for photovoltaic applications and holds promise for the industrialization of F-PSCs.

3.
ACS Omega ; 8(40): 37147-37161, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37841170

RESUMEN

This study utilized a simple hydrothermal technique to prepare pure BiVO4 and tightly bound BiVO4/multiwalled carbon nanotubes (MWCNTs) nanocomposite materials. The surfactant was employed to control the growth, size, and assembly of BiVO4 and the nanocomposite. Various techniques including X-ray diffraction (XRD), Ultraviolet-visible (UV-vis), photoluminescence (PL), Raman, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) were utilized to analyze and characterize BiVO4 and the BiVO4/MWCNTs nanocomposite. Through XRD analysis, it was found that the carbon nanotubes were effectively embedded within the lattice of BiVO4 without generating any separate impurity phase and had no influence on the BiVO4 monoclinic structure. TEM images confirmed the presence of MWCNTs within BiVO4. Furthermore, adding MWCNTs in the BiVO4/MWCNTs nanocomposite resulted in an effective charge transfer transition and improved carrier separation, as evidenced by PL analysis. The introduction of MWCNTs also led to a significant reduction in the optical band gap due to quantum effects. Finally, the antibacterial activity of pure BiVO4 and the BiVO4/MWCNTs nanocomposite was assessed by exposing Proteus mirabilis and Streptococcus mutans to these materials. Biofilm inhibition and antibiofilm activity were measured using a crystal violet assay and a FilmTracer LIVE/DEAD Biofilm Viability Kit. The results demonstrated that pure BiVO4 and BiVO4/MWCNTs effectively inhibited biofilm formation. In conclusion, both pure BiVO4 and BiVO4/MWCNTs are promising materials for inhibiting the bacterial biofilm during bacterial infections.

4.
Sci Rep ; 13(1): 9076, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277466

RESUMEN

According to recent reports, planar structure-based organometallic perovskite solar cells (OPSCs) have achieved remarkable power conversion efficiency (PCE), making them very competitive with the more traditional silicon photovoltaics. A complete understanding of OPSCs and their individual parts is still necessary for further enhancement in PCE. In this work, indium sulfide (In2S3)-based planar heterojunction OPSCs were proposed and simulated with the SCAPS (a Solar Cell Capacitance Simulator)-1D programme. Initially, OPSC performance was calibrated with the experimentally fabricated architecture (FTO/In2S3/MAPbI3/Spiro-OMeTAD/Au) to evaluate the optimum parameters of each layer. The numerical calculations showed a significant dependence of PCE on the thickness and defect density of the MAPbI3 absorber material. The results showed that as the perovskite layer thickness increased, the PCE improved gradually but subsequently reached a maximum at thicknesses greater than 500 nm. Moreover, parameters involving the series resistance as well as the shunt resistance were recognized to affect the performance of the OPSC. Most importantly, a champion PCE of over 20% was yielded under the optimistic simulation conditions. Overall, the OPSC performed better between 20 and 30 °C, and its efficiency rapidly decreases above that temperature.

5.
Sci Rep ; 13(1): 4453, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932171

RESUMEN

Under conventional and silica-supported Muffle furnace methods, water-soluble substituted trimeric triaryl pyridinium cations with various inorganic counter anions are synthesized. The solvent-free synthesis method is superior to the conventional method in terms of non-toxicity, quicker reaction times, ease of workup, and higher yields. Trimeric substituted pyridinium salts acted as excellent catalytic responses for the preparation of Gem-bisamide derivatives compared with available literature. To evaluate the molecular docking, benzyl/4-nitrobenzyl substituted triaryl pyridinium salt compounds with VEGFR-2 kinase were used with H-bonds, π-π stacking, salt bridges, and hydrophobic contacts. The results showed that the VEGFR-2 kinase protein had the most potent inhibitory activity. Intriguingly, the compound [NBTAPy]PF6- had a strongly binds to VEGFR-2 kinase and controlled its activity in cancer treatment and prevention.


Asunto(s)
Líquidos Iónicos , Líquidos Iónicos/química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Simulación del Acoplamiento Molecular , Compuestos de Piridinio/farmacología
6.
Sci Rep ; 12(1): 17203, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229515

RESUMEN

Zinc oxide-silver (ZnO-Ag), and zinc oxide-gold (ZnO-Au) nano-composites were prepared through wet chemical process and laced into single-walled carbon nanotubes (SWCNTs) to yield ZnO-Ag-SWCNTs, and ZnO-Au-SWCNTs hybrids. These nano-composite-laced SWCNTs hybrids were characterized using Raman spectroscopic, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analyses. The hybrids were evaluated for their effects on phagocytic cells and bactericidal activity against the gram-negative bacteria E. coli. Their phagocytic cell activities and intracellular killing actions were found to be significantly increased, as the ZnO-Ag-SWCNTs and ZnO-Au-SWCNTs nano-hybrids induced widespread clearance of Escherichia coli. An increase in the production of reactive oxygen species (ROS) also led to upregulated phagocytosis, which was determined mechanistically to involve the phagocyte NADPH oxidase (NOX2) pathway. The findings emphasized the roles of ZnO-Ag- and ZnO-Au-decorated SWCNTs in the prevention of bacterial infection by inhibiting biofilm formation, showing the potential to be utilized as catheter coatings in the clinic.


Asunto(s)
Nanotubos de Carbono , Óxido de Zinc , Antibacterianos/química , Antibacterianos/farmacología , Escherichia coli/metabolismo , Oro/farmacología , Pruebas de Sensibilidad Microbiana , NADPH Oxidasas , Nanotubos de Carbono/química , Oxidorreductasas , Fagocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Plata/química , Plata/farmacología , Óxido de Zinc/química , Óxido de Zinc/farmacología
7.
RSC Adv ; 12(32): 20461-20470, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35919164

RESUMEN

With the increase in the importance of using green energy sources to meet the world's energy demands, attempts have been made to push perovskite solar cell technology toward industrialization all around the world. Improving the properties of perovskite materials as the heart of PSCs is one of the methods to fabricate favorable photovoltaic (PV) solar cells based on perovskites. Here, cadmium chloride (CdCl2) was used as an additive source for the perovskite precursor to improve its PV properties. Results indicated CdCl2 improves the perovskite growth and tailors its crystalline properties, suggesting boosted charge transport processes in the bulk and interfaces of the perovskite layer with electron-hole transport layers. Overall, by incorporation of 1.0% into the MAPbI3 layer, a maximum power conversion efficiency of 15.28% was recorded for perovskite-based solar cells, higher than the 12.17% for the control devices. The developed method not only improved the PV performance of devices but also boosted the stability behavior of solar cells due to the passivated domain boundaries and enhanced hydrophobicity in the CdCl2-based devices.

8.
Environ Sci Pollut Res Int ; 29(25): 37633-37643, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35066842

RESUMEN

Bismuth molybdate (Bi2MoO6) nanostructures has attracted many researches as an advanced photocalysts for the organic contaminants. In this paper, bismuth molybdate Bi2MoO6 nanoparticles were synthesized using a simple hydrothermal method at varied pH (2, 4, 6, 8, and 10) for 15 h at 180 °C. The results reveal the variation pH precursor solutions have a significant impact on the morphology, phase formations, and photocatalytic activity of samples. The synthesized samples at low pH level were characterized by FESEM analysis revealing Bi2MoO6 nanoplates have formed while gradually convert to Bi2MoO6 spherical nanoparticle at high PH level as shown in energy dispersive X-ray spectroscopy (DES) peaks. The X-ray diffraction patterns reveal characteristic peaks corresponding to mixed phases of Bi2MoO6 and cubic Bi4MoO9 at high pH value. The optical absorption study exhibit Bi2MoO6 nanoplates absorbed visible light with blue shift when compared to the cubic Bi4MoO9 structures. Moreover, the photocatalytic activity results revealed that nanoplates in pH = 4 sample has excellent photocatalytic activity for degradation of rhodamine (RhB), methylene orange (MO), and phenol under visible-light irradiation (λ > 400 nm) as well as exhibit the photodegradation 90% of phenol within 300 min.


Asunto(s)
Contaminantes Ambientales , Nanoestructuras , Bismuto/química , Catálisis , Concentración de Iones de Hidrógeno , Molibdeno , Fenoles
9.
RSC Adv ; 11(18): 10425-10433, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35423556

RESUMEN

Perovskite solar cells (PSCs) have emerged as a practical candidate for new-generation photovoltaic devices to meet global energy demands. Recently, researchers' attempts have been focused on the crucial issues related to PSCs, i.e., stability and performance. In this research, MAPbI3-based PSCs were prepared via a two-step deposition process. To boost the power conversion efficiency (PCE) of the prepared PSCs, an additive engineering approach was employed. A novel 3-methylthiophene (MTP) organic molecule was added to the methylammonium iodide (MAI)/isopropanol (IPA) solution precursor. The additive improved the crystallinity of the perovskite layer, which indicates a more desirable film with lower surface defects and larger particle size. Modified PSCs reduced carries recombination rate at the interfacial of perovskite/hole transport layer (HTL), and the charge transport process is facilitated due to a desirable delocalized π-electron system of the MTP additive. The PCE of PSCs in the presence of MTP additive improved from 12.32% to 16.93% for pristine devices. Importantly, MTP-based PSCs showed higher ambient air stability due to the hydrophobic structure of MTP compared to pristine PSCs.

10.
Beilstein J Nanotechnol ; 11: 1596-1607, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33134004

RESUMEN

We report the synthesis of α-Ag2S nanoparticles (NPs) by one-step laser ablation of a silver target in aqueous solution of thiourea (Tu, CH4N2S) mixed with cationic cetyltrimethylammonium bromide (CTAB) as surfactant. The effect of the CTAB surfactant on the structural, morphological, optical, and elemental composition of Ag2S NPs was evaluated using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and UV-vis spectroscopy. The optical absorption decreased and the optical energy gap of α-Ag2S increased from 1.5 to 2 eV after the CTAB surfactant was added to the Tu solution. XRD studies revealed that the synthesized Ag2S NPs were polycrystalline with a monoclinic structure and that crystallinity of the nanoparticles was improved after adding CTAB. Raman studies revealed the presence of peaks related to Ag-S bonds (Ag modes) and the longitudinal optical phonon 2LO mode. Scanning electron microscopy investigations confirmed the production of monodisperse Ag2S NPs when using the CTAB surfactant. The optoelectronic properties of α-Ag2S/p-Si photodetector, such as current-voltage characteristics and responsivity in the dark and under illumination, were also improved after using the CTAB surfactant. The responsivity of the photodetector increases from 0.64 to 1.85 A/W at 510 nm after adding CTAB. The energy band diagram of the α-Ag2S/p-Si photodetector under illumination was constructed. The fabricated photodetectors exhibited reasonable stability after three weeks of storage under ambient conditions with a responsivity of 70% of the initial value.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA